
MATH 579: Combinatorics
Exam 3 Solutions

1. Use a characteristic equation (not generating functions) to solve the following recurrence. a0 = 0, a1 = 9,
an = −6an−1 − 9an−2 (n ≥ 2).

Our characteristic polynomial is x2 = −6x − 9, which factors as (x + 3)2 = 0. Hence our general solution is
an = α1(−3)n + α2n(−3)n. We now apply our initial conditions to get 0 = a0 = α1(−3)0 + α2 · 0 · (−3)0 = α1

and 9 = a1 = α1(−3)1 + α2 · 1 · (−3)1 = −3α2. This has solution α1 = 0, α2 = −3. Hence our solution is
an = 0(−3)n + (−3)n(−3)n = n(−3)n+1.

2. Use generating functions to solve the following recurrence.
a0 = 0, a1 = 9, an = −6an−1 − 9an−2 (n ≥ 2).

SetA(x) =
∑
n≥0 anx

n, multiply our relation by xn and sum over n ≥ 2. We get
∑
n≥2 anx

n =
∑
n≥2−6an−1x

n+∑
n≥2−9an−2x

n = −6x
∑
n≥2 an−1x

n−1 − 9x2
∑
n≥2 an−2x

n−2. Hence A(x) − a0 − a1x = −6x(A(x) − a0) −
9x2A(x), which rearranges to A(x)(1 + 6x+ 9x2) = 9x, so A(x) = 9x

1+6x+9x2 is our generating function.

Version 1: There is no need for partial fractions, as A(x) = 9x
(1+3x)2 = (−3) (−3x)

(1−(−3x))2 is already in our dictionary.

We have A(x) = (−3)
∑
n≥0 n(−3x)n = (−3)

∑
n≥0 n(−3)nxn. Hence an = (−3)n(−3)n = n(−3)n+1.

Version 2: Lovers of partial fractions can write A(x) = α
1+3x+ β

(1+3x)2 , so α(1+3x)+β = 9x. Equating coefficients,

we get α = 3, β = −3. So A(x) = 3
∑
n≥0(−3)nxn − 3

∑
n≥0(n + 1)(−3)nxn =

∑
n≥0(3 − 3(n + 1))(−3)nxn =∑

n≥0−3n(−3)nxn. So, an = −3n(−3)n = n(−3)n+1.

3. Use inclusion/exclusion to find the chromatic polynomial for:

a b

cd

We have S = {ab, bc, ad}, so f=(∅) = f≥(∅)−f≥(ab)−f≥(bc)−f≥(ad)+f≥(abc)+f≥(abd)+f≥(bc, ad)−f≥(abcd) =
x4 − 3x3 + 3x2 − x.

4. Solve the following recurrence however you like: a0 = 0, an = 3an−1 + 2n + 3n (n ≥ 1).

Version 1: The homogeneous version is easy: an = 3an−1, with general solution an = A3n. The tricky bit is
guessing a solution to the nonhomogeneous version. Since 3n is in the general solution space, we instead multiply
by n, guessing an = j2n + kn3n. Plugging in, we have j2n + kn3n = 3(j2n−1 + k(n− 1)3n−1) + 2n + 3n, which
rearranges as 2n−1(2j − 3j − 2) + 3n−1(3kn − 3k(n − 1) − 3) = 0. Hence we need −j − 2 = 0 and 3k − 3 = 0,
i.e. j = −2, k = 1. So our general solution is an = A3n − 2n+1 + n3n. Applying our initial condition gives
0 = a0 = A30− 21 + 030 = A− 2. Hence A = 2, and our solution is an = 2 · 3n− 2n+1 +n3n = (n+ 2)3n− 2n+1.

Version 2: Set A(x) =
∑
n≥0 anx

n, multiply both sides by xn, and sum over n ≥ 1. We get
∑
n≥1 anx

n =

3
∑
n≥1 an−1x

n +
∑
n≥1 2nxn +

∑
n≥1 3nxn, and hence A(x)− a0 = 3xA(x) + 1

1−2x − 1 + 1
1−3x − 1, or A(x)(1−

3x) = 1
1−2x + 1

1−3x − 2. Dividing, we get A(x) = 1
(1−2x)(1−3x) + 1

(1−3x)2 −
2

1−3x . We need a bit of partial

fractions, 1
(1−2x)(1−3x) = α

1−2x + β
1−3x . Hence 1 = α(1 − 3x) + β(1 − 2x), so α = −2, β = 3. Hence A(x) =

−2
1−2x + 3

1−3x + 1
(1−3x)2 −

2
1−3x = −2

1−2x + 1
(1−3x)2 + 1

1−3x = −2
∑
n≥0 2nxn +

∑
n≥0(n + 1)3nxn +

∑
n≥0 3nxn =∑

n≥0((−2) · 2n + (n+ 1)3n + 3n)xn. Hence an = −2 · 2n + (n+ 1)3n + 3n = −2n+1 + (n+ 2)3n.

5. Count the number of solutions to a + b + c + d = n in nonnegative integers a, b, c, d, such that a is a multiple
of 4, b is at most 1, and d is either 0 or 2.

The number of solutions is counted by the generating function (1+x4+x8+· · · )(1+x)(1+x+x2+x3+· · · )(1+x2) =
1

1−x4 (1 + x) 1
1−x (1 + x2) = (1+x)(1+x2)

(1+x2)(1−x2)(1−x) = 1+x
(1+x)(1−x)(1−x) = 1

(1−x)2 =
∑
n≥0(n + 1)xn. Hence the desired

solution is n+ 1.

6. Count the number of solutions to a+ b+ c+ d = 30 in nonnegative integers a, b, c, d, such that a ≤ 9, b ≤ 9, c ≤
9, d ≤ 14.

We have S = {sa, sb, sc, sd}, where sa means a ≥ 10, sb means b ≥ 10, sc means c ≥ 10, and sd means d ≥ 15. We
have a lot of symmetry, with d going its own way. So, f=(∅) = f≥(∅)−3f≥(sa)−f≥(sd)+3f≥(sasb)+3f≥(sasd)−
f≥(sasbsc)− 3f≥(sasbsd) + f≥(sasbscsd) =

((
4
30

))
− 3

((
4
20

))
−
((

4
15

))
+ 3

((
4
10

))
+ 3

((
4
5

))
−
((

4
0

))
− 3 · 0 + 0 = 352.


