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MATH 579: Combinatorics
Exam 3 Solutions

Use a characteristic equation (not generating functions) to solve the following recurrence. ap = 0,a; = 9,
ap, = —6a,-1 — 9a,—2 (n>2).

Our characteristic polynomial is 22 = —6x — 9, which factors as (x + 3)? = 0. Hence our general solution is
an = a1(—3)" + azn(—3)". We now apply our initial conditions to get 0 = ag = a1(—=3)° + az -0 (=3)° = oy
and 9 = a; = a1(—=3) + ag - 1-(=3)! = —3as. This has solution oy = 0,2 = —3. Hence our solution is

an = 0(=3)" + (=3)n(—3)" = n(—3)"*1.

Use generating functions to solve the following recurrence.
ap=0,a1 =9, a, = —6a,—1 —a,—2 (n>2).

Set A(xz) =), anx™, multiply our relation by 2™ and sum over n > 2. Weget Y -, anz™ = <o —6an_12"+
Y on>o —9a,,_oz" = —6x Ypsg @12 =922 3" o an_s2™ 2. Hence A(x) — ap — a1z = —6x(A(x) — ag) —
922 A(z), which rearranges to A(z)(1 + 6z 4 9z2) = 9z, so A(z) =

9z . . .
TT6o4022 Is our generating function.

Version 1: There is no need for partial fractions, as A(z) = (H?#)? = (73)% is already in our dictionary.
We have A(z) = (—3) ano n(—=3z)" = (-3) ano n(—=3)"x". Hence a, = (—=3)n(—=3)" = n(=3)"*+1.

Version 2: Lovers of partial fractions can write A(z) = ﬁ—l—m, s0 a(14-3z)+ 8 = 9z. Equating coefficients,
we get a = 3,8 = —3. So A(z) =33 ,5¢(=3)"2" =33, 5o(n+1)(=3)"2" =3 5,3 —3(n+1))(=3)"z" =
Y ons0 —3n(=3)"z™. So, a, = —=3n(=3)" = n(-3)"*".

a — b
Use inclusion/exclusion to find the chromatic polynomial for: ‘ \
d (¢
We have S = {ab, bc, ad}, so f=(0) = f>(0)—f>(ab)— f> (bc)— f> (ad)+ f> (abc)+ f> (abd)+ f> (be, ad) — f> (abed) =
zt — 323 + 32% — 7.

Solve the following recurrence however you like: ag = 0, a,, = 3a,—1 + 2" + 3" (n > 1).

Version 1: The homogeneous version is easy: a, = 3a,_1, with general solution a, = A3™. The tricky bit is
guessing a solution to the nonhomogeneous version. Since 3™ is in the general solution space, we instead multiply
by n, guessing a,, = j2" + kn3"™. Plugging in, we have j2" + kn3" = 3(j2" ! + k(n — 1)3"~1) + 2" + 3", which
rearranges as 2" (25 — 35 — 2) + 3" 1(3kn — 3k(n — 1) — 3) = 0. Hence we need —j —2 = 0 and 3k — 3 = 0,
ie. 1 = —2,k = 1. So our general solution is a, = A3" — 2"t + n3". Applying our initial condition gives
0=uay=A3"-2'4+03° = A —2. Hence A = 2, and our solution is a,, = 2-3" — 2" + n3" = (n +2)3" — 2"+
Version 2: Set A(x) = >, - @n2", multiply both sides by z™, and sum over n > 1. We get > o apa™ =
3> 51 n12™ + Zn>1 2"z" + 37,5, 3"2", and hence A(z) —ag = 3$A( )+ i — 14+ i — 1, or A(z)(1 -
3r) = - + W — 2. Dividing, we get A(z) = = 21)1(1 5o T s Sz)z — 2. We need a bit of partial

1-3z
fractions, (1_%)(1_3@ = %, + 1_’63x. Hence 1 = o(1 — 3z) + 8(1 — 2z), so « = —2,8 = 3. Hence A(z) =

o T 1—33m + (1—%30:)2 - 1—23r =% + (1—%%)2 + 1—13z = =23 502" + X pso(n+ 1)3"2" 4 37, 503" =
Y onso((=2) - 2" + (n+1)3" 4 3")z™. Hence a, = —2-2" 4 (n+ 1)3" + 3" = 2" 4 (n +2)3".

Count the number of solutions to a + b + ¢ + d = n in nonnegative integers a, b, ¢, d, such that a is a multiple
of 4, b is at most 1, and d is either 0 or 2.

The number of solutions is counted by the generating function (1+z4 —i—a: +- ) (42)(I4a+z2+23+ - ) (1+22) =

1+x x> n .
(14 2) (1422 = (1+(132+)(1)(1x+2)(1) o = (1+x)(1fx)(1_x) = x) = > ,>o(n + 1)z". Hence the desired

solution is n + 1

Count the number of solutions to a + b+ ¢+ d = 30 in nonnegative integers a, b, ¢, d, such that a < 9,6 < 9,¢ <
9,d < 14.

We have S = {s,, Sp, S¢, Sq}, where s, means a > 10, s, means b > 10, s, means ¢ > 10, and s4 means d > 15. We
have a lot of symmetry, with d going its own way. So, f=(0) = f> (@) 73f>(sa) f>(sd) +3f>(5asb)+3f> (Sasd)—
I=(sas050) = 3f2(sasp54) + f= (sasvsesa) = ((50)) =3 (o)) — ((5) +3 ((6) +3 () — (G) —3-0+0 =352,



