MATH 579: Combinatorics

Exam 3 Solutions

1. Use a characteristic equation (not generating functions) to solve the following recurrence. $a_0 = 0, a_1 = 9,$ $a_n = -6a_{n-1} - 9a_{n-2} \quad (n \ge 2).$

Our characteristic polynomial is $x^2 = -6x - 9$, which factors as $(x + 3)^2 = 0$. Hence our general solution is $a_n = \alpha_1(-3)^n + \alpha_2 n(-3)^n$. We now apply our initial conditions to get $0 = a_0 = \alpha_1(-3)^0 + \alpha_2 \cdot 0 \cdot (-3)^0 = \alpha_1$ and $9 = a_1 = \alpha_1(-3)^1 + \alpha_2 \cdot 1 \cdot (-3)^1 = -3\alpha_2$. This has solution $\alpha_1 = 0, \alpha_2 = -3$. Hence our solution is $a_n = 0(-3)^n + (-3)n(-3)^n = n(-3)^{n+1}.$

2. Use generating functions to solve the following recurrence.

 $a_0 = 0, a_1 = 9, a_n = -6a_{n-1} - 9a_{n-2} \quad (n \ge 2).$ Set $A(x) = \sum_{n \ge 0} a_n x^n$, multiply our relation by x^n and sum over $n \ge 2$. We get $\sum_{n \ge 2} a_n x^n = \sum_{n \ge 2} -6a_{n-1}x^n + C_n x^n + C_n x^n$ $\sum_{n\geq 2} -9a_{n-2}x^n = -6x \sum_{n\geq 2} a_{n-1}x^{n-1} - 9x^2 \sum_{n\geq 2} a_{n-2}x^{n-2}.$ Hence $A(x) - a_0 - a_1x = -6x(A(x) - a_0) - 9x^2A(x)$, which rearranges to $A(x)(1 + 6x + 9x^2) = 9x$, so $A(x) = \frac{9x}{1 + 6x + 9x^2}$ is our generating function.

Version 1: There is no need for partial fractions, as $A(x) = \frac{9x}{(1+3x)^2} = (-3)\frac{(-3x)}{(1-(-3x))^2}$ is already in our dictionary. We have $A(x) = (-3) \sum_{n \ge 0} n(-3x)^n = (-3) \sum_{n \ge 0} n(-3)^n x^n$. Hence $a_n = (-3)n(-3)^n = n(-3)^{n+1}$.

Version 2: Lovers of partial fractions can write $A(x) = \frac{\alpha}{1+3x} + \frac{\beta}{(1+3x)^2}$, so $\alpha(1+3x) + \beta = 9x$. Equating coefficients, we get $\alpha = 3, \beta = -3$. So $A(x) = 3\sum_{n\geq 0}(-3)^n x^n - 3\sum_{n\geq 0}(n+1)(-3)^n x^n = \sum_{n\geq 0}(3-3(n+1))(-3)^n x^n = 2(3-3(n+1))(-3)^n x^n = 2(3-3(n+1))(\sum_{n\geq 0} -3n(-3)^n x^n$. So, $a_n = -3n(-3)^n = n(-3)^{n+1}$.

 use inclusion/exclusion to find the chromatic polynomial for:
 b
3.

We have $S = \{ab, bc, ad\}$, so $f_{=}(\emptyset) = f_{>}(\emptyset) - f_{>}(ab) - f_{>}(bc) - f_{>}(ad) + f_{>}(abc) + f_{>}(abd) + f_{>}(bc, ad) - f_{>}(abcd) = f_{>}(abcd) - f_{>}(abc$ $x^4 - 3x^3 + 3x^2 - x$.

4. Solve the following recurrence however you like: $a_0 = 0, a_n = 3a_{n-1} + 2^n + 3^n \ (n \ge 1)$.

Version 1: The homogeneous version is easy: $a_n = 3a_{n-1}$, with general solution $a_n = A3^n$. The tricky bit is guessing a solution to the nonhomogeneous version. Since 3^n is in the general solution space, we instead multiply by n, guessing $a_n = j2^n + kn3^n$. Plugging in, we have $j2^n + kn3^n = 3(j2^{n-1} + k(n-1)3^{n-1}) + 2^n + 3^n$, which rearranges as $2^{n-1}(2j-3j-2) + 3^{n-1}(3kn-3k(n-1)-3) = 0$. Hence we need -j-2 = 0 and 3k-3 = 0, i.e. j = -2, k = 1. So our general solution is $a_n = A3^n - 2^{n+1} + n3^n$. Applying our initial condition gives $0 = a_0 = A3^0 - 2^1 + 03^0 = A - 2$. Hence A = 2, and our solution is $a_n = 2 \cdot 3^n - 2^{n+1} + n3^n = (n+2)3^n - 2^{n+1}$. Version 2: Set $A(x) = \sum_{n \ge 0} a_n x^n$, multiply both sides by x^n , and sum over $n \ge 1$. We get $\sum_{n \ge 1} a_n x^n = a_n x^n$ $3\sum_{n\geq 1}a_{n-1}x^n + \sum_{n\geq 1}2^nx^n + \sum_{n\geq 1}3^nx^n, \text{ and hence } A(x) - a_0 = 3xA(x) + \frac{1}{1-2x} - 1 + \frac{1}{1-3x} - 1, \text{ or } A(x)(1-3x) = \frac{1}{1-2x} + \frac{1}{1-3x} - 2.$ Dividing, we get $A(x) = \frac{1}{(1-2x)(1-3x)} + \frac{1}{(1-3x)^2} - \frac{2}{1-3x}.$ We need a bit of partial fractions, $\frac{1}{(1-2x)(1-3x)} = \frac{\alpha}{1-2x} + \frac{\beta}{1-3x}.$ Hence $1 = \alpha(1-3x) + \beta(1-2x)$, so $\alpha = -2, \beta = 3.$ Hence $A(x) = \frac{-2}{1-2x} + \frac{3}{1-3x} + \frac{1}{(1-3x)^2} - \frac{2}{1-3x} = \frac{-2}{1-2x} + \frac{1}{(1-3x)^2} + \frac{1}{1-3x} = -2\sum_{n\geq 0}2^nx^n + \sum_{n\geq 0}(n+1)3^nx^n + \sum_{n\geq 0}3^nx^n = \sum_{n\geq 0}((-2)\cdot 2^n + (n+1)3^n + 3^n)x^n.$ Hence $a_n = -2\cdot 2^n + (n+1)3^n + 3^n = -2^{n+1} + (n+2)3^n.$

- 5. Count the number of solutions to a + b + c + d = n in nonnegative integers a, b, c, d, such that a is a multiple of 4, b is at most 1, and d is either 0 or 2.

The number of solutions is counted by the generating function $(1+x^4+x^8+\cdots)(1+x)(1+x+x^2+x^3+\cdots)(1+x^2) = (1+x^2+x^3+\cdots)(1+x^2)$ $\frac{1}{1-x^4}(1+x)\frac{1}{1-x}(1+x^2) = \frac{(1+x)(1+x^2)}{(1+x^2)(1-x^2)(1-x)} = \frac{1+x}{(1+x)(1-x)(1-x)} = \frac{1}{(1-x)^2} = \sum_{n\geq 0} (n+1)x^n.$ Hence the desired solution is n+1.

6. Count the number of solutions to a + b + c + d = 30 in nonnegative integers a, b, c, d, such that $a \le 9, b \le 9, c \le 10^{-10}$ $9, d \leq 14.$

We have $S = \{s_a, s_b, s_c, s_d\}$, where s_a means $a \ge 10$, s_b means $b \ge 10$, s_c means $c \ge 10$, and s_d means $d \ge 15$. We have a lot of symmetry, with d going its own way. So, $f_{=}(\emptyset) = f_{\geq}(\emptyset) - 3f_{\geq}(s_a) - f_{\geq}(s_d) + 3f_{\geq}(s_as_b) + 3f_{\geq}(s_as_d) - f_{\geq}(s_as_bs_c) - 3f_{\geq}(s_as_bs_d) + f_{\geq}(s_as_bs_cs_d) = \binom{4}{30} - 3\binom{4}{20} - \binom{4}{(15)} + 3\binom{4}{(10)} + 3\binom{4}{(15)} - \binom{4}{(10)} - 3 \cdot 0 + 0 = 352.$