## MATH 579: Combinatorics

## Exam 3 Solutions

1. Use a characteristic equation (not generating functions) to solve the following recurrence. $a_{0}=0, a_{1}=9$, $a_{n}=-6 a_{n-1}-9 a_{n-2} \quad(n \geq 2)$.
Our characteristic polynomial is $x^{2}=-6 x-9$, which factors as $(x+3)^{2}=0$. Hence our general solution is $a_{n}=\alpha_{1}(-3)^{n}+\alpha_{2} n(-3)^{n}$. We now apply our initial conditions to get $0=a_{0}=\alpha_{1}(-3)^{0}+\alpha_{2} \cdot 0 \cdot(-3)^{0}=\alpha_{1}$ and $9=a_{1}=\alpha_{1}(-3)^{1}+\alpha_{2} \cdot 1 \cdot(-3)^{1}=-3 \alpha_{2}$. This has solution $\alpha_{1}=0, \alpha_{2}=-3$. Hence our solution is $a_{n}=0(-3)^{n}+(-3) n(-3)^{n}=n(-3)^{n+1}$.
2. Use generating functions to solve the following recurrence.
$a_{0}=0, a_{1}=9, a_{n}=-6 a_{n-1}-9 a_{n-2} \quad(n \geq 2)$.
Set $A(x)=\sum_{n \geq 0} a_{n} x^{n}$, multiply our relation by $x^{n}$ and sum over $n \geq 2$. We get $\sum_{n \geq 2} a_{n} x^{n}=\sum_{n \geq 2}-6 a_{n-1} x^{n}+$ $\sum_{n \geq 2}-9 a_{n-2} x^{n}=-6 x \sum_{n \geq 2} a_{n-1} x^{n-1}-9 x^{2} \sum_{n \geq 2} a_{n-2} x^{n-2}$. Hence $A(x)-a_{0}-a_{1} x=-6 x\left(A(x)-a_{0}\right)-$ $9 x^{2} A(x)$, which rearranges to $A(x)\left(1+6 x+9 x^{2}\right)=9 x$, so $A(x)=\frac{9 x}{1+6 x+9 x^{2}}$ is our generating function.
Version 1: There is no need for partial fractions, as $A(x)=\frac{9 x}{(1+3 x)^{2}}=(-3) \frac{(-3 x)}{(1-(-3 x))^{2}}$ is already in our dictionary. We have $A(x)=(-3) \sum_{n \geq 0} n(-3 x)^{n}=(-3) \sum_{n \geq 0} n(-3)^{n} x^{n}$. Hence $a_{n}=(-3) n(-3)^{n}=n(-3)^{n+1}$.
Version 2: Lovers of partial fractions can write $A(x)=\frac{\alpha}{1+3 x}+\frac{\beta}{(1+3 x)^{2}}$, so $\alpha(1+3 x)+\beta=9 x$. Equating coefficients, we get $\alpha=3, \beta=-3$. So $A(x)=3 \sum_{n \geq 0}(-3)^{n} x^{n}-3 \sum_{n \geq 0}(n+1)(-3)^{n} x^{n}=\sum_{n \geq 0}(3-3(n+1))(-3)^{n} x^{n}=$ $\sum_{n \geq 0}-3 n(-3)^{n} x^{n}$. So, $a_{n}=-3 n(-3)^{n}=n(-3)^{n+1}$.

| $a$ | $-b$ |
| :---: | :---: |
| $\mid$ | $\mid$ |
| $d$ | $c$ |

We have $S=\{a b, b c, a d\}$, so $f_{=}(\emptyset)=f_{\geq}(\emptyset)-f_{\geq}(a b)-f_{\geq}(b c)-f_{\geq}(a d)+f_{\geq}(a b c)+f_{\geq}(a b d)+f_{\geq}(b c, a d)-f_{\geq}(a b c d)=$ $x^{4}-3 x^{3}+3 x^{2}-x$.
4. Solve the following recurrence however you like: $a_{0}=0, a_{n}=3 a_{n-1}+2^{n}+3^{n}(n \geq 1)$.

Version 1: The homogeneous version is easy: $a_{n}=3 a_{n-1}$, with general solution $a_{n}=A 3^{n}$. The tricky bit is guessing a solution to the nonhomogeneous version. Since $3^{n}$ is in the general solution space, we instead multiply by $n$, guessing $a_{n}=j 2^{n}+k n 3^{n}$. Plugging in, we have $j 2^{n}+k n 3^{n}=3\left(j 2^{n-1}+k(n-1) 3^{n-1}\right)+2^{n}+3^{n}$, which rearranges as $2^{n-1}(2 j-3 j-2)+3^{n-1}(3 k n-3 k(n-1)-3)=0$. Hence we need $-j-2=0$ and $3 k-3=0$, i.e. $j=-2, k=1$. So our general solution is $a_{n}=A 3^{n}-2^{n+1}+n 3^{n}$. Applying our initial condition gives $0=a_{0}=A 3^{0}-2^{1}+03^{0}=A-2$. Hence $A=2$, and our solution is $a_{n}=2 \cdot 3^{n}-2^{n+1}+n 3^{n}=(n+2) 3^{n}-2^{n+1}$.
Version 2: Set $A(x)=\sum_{n \geq 0} a_{n} x^{n}$, multiply both sides by $x^{n}$, and sum over $n \geq 1$. We get $\sum_{n \geq 1} a_{n} x^{n}=$ $3 \sum_{n \geq 1} a_{n-1} x^{n}+\sum_{n \geq 1} 2^{n} x^{\bar{n}}+\sum_{n \geq 1} 3^{n} x^{n}$, and hence $A(x)-a_{0}=3 x A(x)+\frac{1}{1-2 x}-1+\frac{1}{1-3 x}-1$, or $A(x)(1-$ $3 x)=\frac{1}{1-2 x}+\frac{1}{1-3 x}-2$. Dividing, we get $A(x)=\frac{1}{(1-2 x)(1-3 x)}+\frac{1}{(1-3 x)^{2}}-\frac{2}{1-3 x}$. We need a bit of partial fractions, $\frac{1}{(1-2 x)(1-3 x)}=\frac{\alpha}{1-2 x}+\frac{\beta}{1-3 x}$. Hence $1=\alpha(1-3 x)+\beta(1-2 x)$, so $\alpha=-2, \beta=3$. Hence $A(x)=$ $\frac{-2}{1-2 x}+\frac{3}{1-3 x}+\frac{1}{(1-3 x)^{2}}-\frac{2}{1-3 x}=\frac{-2}{1-2 x}+\frac{1}{(1-3 x)^{2}}+\frac{1}{1-3 x}=-2 \sum_{n \geq 0} 2^{n} x^{n}+\sum_{n \geq 0}(n+1) 3^{n} x^{n}+\sum_{n \geq 0} 3^{n} x^{n}=$ $\sum_{n \geq 0}\left((-2) \cdot 2^{n}+(n+1) 3^{n}+3^{n}\right) x^{n}$. Hence $a_{n}=-2 \cdot 2^{n}+(n+1) 3^{n}+3^{n}=-2^{n+1}+(n+2) 3^{n}$.
5. Count the number of solutions to $a+b+c+d=n$ in nonnegative integers $a, b, c, d$, such that $a$ is a multiple of $4, b$ is at most 1 , and $d$ is either 0 or 2 .
The number of solutions is counted by the generating function $\left(1+x^{4}+x^{8}+\cdots\right)(1+x)\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x^{2}\right)=$ $\frac{1}{1-x^{4}}(1+x) \frac{1}{1-x}\left(1+x^{2}\right)=\frac{(1+x)\left(1+x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)(1-x)}=\frac{1+x}{(1+x)(1-x)(1-x)}=\frac{1}{(1-x)^{2}}=\sum_{n \geq 0}(n+1) x^{n}$. Hence the desired solution is $n+1$.
6. Count the number of solutions to $a+b+c+d=30$ in nonnegative integers $a, b, c, d$, such that $a \leq 9, b \leq 9, c \leq$ $9, d \leq 14$.
We have $S=\left\{s_{a}, s_{b}, s_{c}, s_{d}\right\}$, where $s_{a}$ means $a \geq 10$, $s_{b}$ means $b \geq 10, s_{c}$ means $c \geq 10$, and $s_{d}$ means $d \geq 15$. We have a lot of symmetry, with $d$ going its own way. So, $f_{=}(\emptyset)=f_{\geq}(\emptyset)-3 f_{\geq}\left(s_{a}\right)-f_{\geq}\left(s_{d}\right)+3 f_{\geq}\left(s_{a} s_{b}\right)+3 f_{\geq}\left(s_{a} s_{d}\right)-$ $\left.f_{\geq}\left(s_{a} s_{b} s_{c}\right)-3 f_{\geq}\left(s_{a} s_{b} s_{d}\right)+f_{\geq}\left(s_{a} s_{b} s_{c} s_{d}\right)=\left(\binom{4}{30}\right)-3\left(\binom{4}{20}\right)-\left(\binom{4}{15}\right)+3\left(\binom{4}{10}\right)+3 \overline{( }\binom{4}{5}\right)-\left(\binom{4}{0}\right)-3 \cdot 0+0=352$.

